/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Test Doubles
... getting the world under test control

/v GammaTown’s RateStrategy

AARHUS UNIVERSITET

public class AlternatingRateStrategy implements RateStrategy {
private RateStrategy
weekendStrategy, weekdayStrategy, currentState;
public AlternatingRateStrategy(RateStrategy weekdayStrategy,
RateStrategy weekendStrategy) {
this.weekdayStrategy = weekdayStrategy;
this.weekendStrategy = weekendStrategy;
this.currentState = null;

}
public int calculateTime(int amount) {
if isWeekend
currentState = weekendStrategy;

} else { But how to test? How do
currentState = weekdayStrategy;

} | TDD it?

return currentState.calculateTime(amount);

}

private boolean isWeekend() { ‘E
Date d = new Date();
Calendar c = new GregorianCalendar();
c.setTime(d); —
int dayOfWeek = c.get(Calendar.DAY OF WEEK);

return (dayOfWeek == Calendar.SATURDAY Read system clock to
|l . ap sy
day0fWeek == Calendar.SUNDAY); determine if itis
¥ weekend

CS, AU Henrik Baerbak Christensen 2

/v Tricky Requirement

AARHUS UNIVERSITET
* The test case for AlphaTown:

Unit under test: Rate calculation _
Input Expected output 7/ Ve @ ey tatLon

pay = 500 cent 200 min. // When I enter 50 cents
ps|addPayment(coinValue: 25);

s ST B

ps.addPayment(coinValue: 25);

e ... but how does it look for GammaTown?

Unit under test: Rate calculation
Input . Expected output

pay = 500 Cent-day = Monday 200 min.
pay = 500 cent}day = Sunday 150 min.

. 3

ps.addPayment(coinValue: 25\ [eTals F\VA REE s

ps.addPayment(coinValue: 25);
CS, AU Henrik Baerbak Christensen 3

/v Parameters

AARHUS UNIVERSITET
* The test case for AlphaTown:

Unit under test: Rate calculation _ | _
Input Expected output // Given a paystation
pay = 500 cent i

J/ When I epnter 50 cents

ps}addPayment(coinValue: 25);

ps.addPayment(coinValue: 25);

e ... but how does it look fg

Unit under test: Rate calculation
Input .

pay = 500 cent-day = Monday
pay = 500 centjday = Sunday

150 min.

// Given a paystation

// When I enter 50 cents

ps.addPayment (coinvalue: 25 SV IeTeo EIV) REadrs

ps.addPayment(coinValue: 25);
CS,AU Henrik Baerbak Christensen 4

/v Code view

AARHUS UNIVERSITET

Fragment: chapter/state/compositional/iteration-2/src/ test/java/paystation/ manual/ TestGammaWeekdayRate.java

System. out. println("Manual test of GammaTown Rate for Weekdays");
RateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategy (),
new ProgressiveRateStrategy ());
// Should show 200 minutes for 500 cents
assertThat(rs.calculateTime (500), is(500/5 = 2));

N
N
-
N

Direct input parameter: payment N

Indirect input parameter: day of week

CS, AU Henrik Baerbak Christensen 5

/v TDD of State Pattern

AARHUS UNIVERSITET
* To implement GammaTown requirements | do it manually

 [teration 1: Weekday. In this iteration, I add the weekdayTest target to my
Gradle build script, a manual TestGammaWeekdayRate Java main program
that uses the Hamcrest library to test a AlternatingRateStrategy and has a single
Representative Data test case for the linear rate during weekdays. As it fails
due to a missing AlternatingRateStrategy I create it, add the first linear rate
subordinate Db]ed and delegate the calculation to it if it is not weekend. Step
4: Run : : m all succeed but only because I actually made this
iterationjon a Wednesday!

o Jteration 2: Weekend. Next, I add a weekendTest target, I adjust the clock to
next Sunday, add a TestGammaWeekendRate and finally Triangulate the imple-
mentation of the rate policy.

 [teration 3: Integration. Integration testing poses some special problems that I
will discuss in Chapter 12.

CS, AU Henrik Baerbak Christensen 6

VeV But it is bad ...

AARHUS UNIVERSITET

« After introducing Gammatown | no longer have
automated tests because | have to run some of the tests
during the weekend.

— | have a ‘manual run on weekend and another run on weekdays
targets’

* | want to get back to as much automated testing as
possible.

/v Analysis of Parameters

AARHUS UNIVERSITET

Fragment: chapter/state/compositional/iteration-2/src/ test/java/paystation/ manual/ TestGammaWeekdayRate.java

System. out. println("Manual test of GammaTown Rate for Weekdays");
RateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategy (),
new ProgressiveRateStrategy ());
// Should show 200 minutes for 500 cents
assertThat(rs.calculateTime (500), is(500/5 = 2));

N
N
N
N

Direct input parameter: payment N

Indirect input parameter: day of week

CS, AU Henrik Baerbak Christensen 8

/v Definitions

AARHUS UNIVERSITET
« This reflection allows me to classify parameters:
Definition: Direct input

Direct input is values or data, provided directly by the testing code, that
affect the behavior of the unit under test (UUT).

Definition: Indirect input

Indirect input is values or data, that cannot be provided directly by the
testing code, that affect the behavior of the unit under test (UUT).

« UUT = Unit Under Test.

— here it is the AlternatingRateStrategy instance...

CS, AU Henrik Baerbak Christensen 9

VeV Where does indirect input come from?
AARHUS UNIVERSITET

« So, the 1000% question is: where does the indirect input
parameter come from?

Unit under test: Rate calculation

Input Expected output
pay = 500 cent, day = Monday 200 min.

pay = 500 cent, day = Sunday 150 min.

« Exercise: Name other types of indirect input?

/v Analysis: Code view

AARHUS UNIVERSITET
e Structure of xUnit test cases

1: setup

[2:execute 3: query

JUnit test ’ uuT
|

M A

4 Valicﬁfe

T

DOU

— Collaboration diagram: interaction between objects

« DOU = Depended On Unit
Definition: Depended-on unit

A unit in the production code that provides values or behavior that affect
the behavior of the unit under test.

CS, AU Henrik Baerbak Christensen 11

eV Direct versus Indirect

AARHUS UNIVERSITET
1: setup
) 2:execute 3: query
JUnit test - UuT ’ DOU
|\._.x'
4: validate
T
> <
Direct input Indirect input

CS, AU Henrik Baerbak Christensen 12

/v

The Gammatown Rate Policy
AARHUS UNIVERSITET
« My DOU is the Java system clock:

1: setup
R 2:execute 3: query

JUnit test - UUT ’ DOU
)

4: validate

T
_ System Clock:
Test code AlternatingRateStrategy java.time package
> <

Method parameters Calling library methods

private boolean isWeekend() {
Date d = new Date();
Calendar c =
c.setTime (d) ;

int dayOfWeek = c.get(Calendar.DAY OF WEEE);
return (dayCfWeek == Cale
CS, AU

endar . SATURDAY
. . Il
Henrik Baerbak Christensen

dayofWeek == Calendar.SUNDAY) ;
}

new GregorianCalendar();

/v The Challenge

AARHUS UNIVERSITET
« This analysis allows me to state the challenge:

1: setup

——

| 2:execute 3: query
JUnit test = uuT — = DOU
J

4: validate

T

System Clock
Test code AlternatingRateStrategy System.DateTime

java.util.Calendar

CS, AU Henrik Baerbak Christensen 14

/v Analysis

AARHUS UNIVERSITET

« Basically, it is a variability problem
— During testing, use data given by test code
— During normal operations, use data given by system

« So, | can reuse my previous analysis
— parametric proposal

— polymorphic proposal
— compositional proposal Scientists like to do this all the time! If
we can rephrase a new question into

an old one, whose answer is known —
then we are done ©

CS, AU Henrik Baerbak Christensen 15

/v Parametric

AARHUS UNIVERSITET
« This is perhaps the oldest solution in the C world

#ifdef DEBUG

today = PRESET_VALUE;
tHelse

today = (get date from clock);

« #
return today == Saturday || today == Sunday;

/v Polymorphic

AARHUS UNIVERSITET
* Subclassing...

/{ The subclassing wvariant,

public class TestAlternatingRateStrategy extends AlternatingRateStrategy {
public AlternatingRateStrategy(RateStrategy weekdayStrategy,
. RateStrategy weekendStrategy) {
I Alternat|ng RateStrategy I super(weekdayStrategy, weekendStrategy);
¥

// calculateTime inherited from superclass = correct algorithm
protected boolean iskWeekend() {
return iskeekend;

¥

protected void setIsWeekend(boolean newValue) {
isWeekend = newValue;

| TestAlternatingRateStrategy | }

private boolean islWeekend;

« Actually, a quite reasonable approach...
— If you locate the TestAlterna... in the /test tree in the codebase

* Argue why!!!
 Hm, liability: Have to make isWeekend() ‘non private’

CS, AU Henrik Baerbak Christensen 17

Y o Compositional

AARHUS UNIVERSITET
« 3-1-2 leads to yet another Strategy Pattern:

@ I identify some behavior that varies. It is basically the behavior defined by the
isWeekend() method that is variable.

@ I state a responsibility that covers the behavior that varies by an interface. I will define
an interface WeekendDecisionStrategy containing the isWeekend() method.

@ I compose the desired behavior by delegating. Again, this is the real principle that
brings the solution: I simply let the AlternatingRateStrategy call the isWeek-
end() method provided by the WeekendDecisionStrategy to find out whether it
is weekend or not. I can then make implementations that either returns a preset
value (for testing) or uses the operating system clock (for production usage).

CS, AU Henrik Baerbak Christensen 18

VeV Static Architecture View

AARHUS UNIVERSITET
«interface» > «interface»
PayStation RateStrategy
‘ 2 TR/
/ ’ I' I|
«interface» N _ !
WeekendDecisionStrategy AlternatingHateStrategy [!
|
/] \ P
.-}H \\x i i
E.’r Y LinearRateStrategy
|

ClockBasedDecisionStrategy

FixedDecisionStrategy
ProgressiveRateStrategy

« Exercise: Why is this Strategy and not State?

Henrik Baerbak Christensen

CS, AU

/v

AARHUS UNIVERSITET

Production Code

public class AlternatingRateStrategy implements RateStrategy {
private RateStrategy weekendStrategy, weekdayStrategy, currentState;
private WeekendDecisionStrategy decisionStrategy;

public AlternatingRateStrategy(RateStrategy weekdayStrategy,
RateStrategy weekendStrategy,
WeekendDecisionStrategy decisionStrategy) {
this.weekdayStrategy = weekdayw T
this.weekendStrategy = weekendStrategy;
this.currentState = null;
this.decisionStrategy = decisionStrategy;

} . of .
public int calculateTime(int amount) { The algorlthm to CompUte if its

if (decisionStrategy.isWeekend()) { weekend is delegated to our

currentState = weekendStrateqgy;
} else {

currentState = weekdayStrategy;
}

return currentState.calculateTime(amount);

decisionStrategy

CS, AU Henrik Baerbak Christensen 20

eV The Stub

AARHUS UNIVERSITET

* To make a deterministic test; we write an implementation
which makes the ‘indirect input’ into ‘direct input’
— That is, we get the ‘is-it-weekend’ under direct control of our test

CO d e Listing: chapter/test-double/iteration-2/src/test/java/paystation/domain/FixedDecisionStrategy.java
package paystation.domain;

import java.util.*;

/** A test stub for the weekend decision strategy.

%/

public class FixedDecisionStrategy
implements WeekendDecisionStrategy |{

private boolean isWeekend;

/** construct a test stub weekend decision strategy.

* @param isWeekend the boolean value to return in all calls to
* method isWeekend ().

*

/

public FixedDecisionStrategy (boolean isWeekend) {
this.isWeekend = isWeekend;

} : : :
public boolean isWeekend () | Side note: Which Uncle Bob

| e e property do | violate here ®?
CS, AU |

/v

Now the Test Code is:

AARHUS UNIVERSITET

public class TestAlternatingRate {
/*¥* Test two hour parking during weekdays */
@Test public void shouldDisplayl20MinFor300cent() {
RateStrategy rs =

new AlternatingRateStrategy(new LinearRateStrategy(),
new ProgressiveRateStrategyl(),

new FixedDecisiunStrategy{faLSE]};

assertThat(rs.calculateTime(300), 1s(128));

}

JI.I"**

Test two hour parking during weekends */

@Test public void shouldDisplaylz@MinFor350cent() {
RateStrategy rs =

new AlternatingRateStrategy(new LinearRateStrategy(),
new ProgressiveRateStrategyl(),

new FixedDecisionStrategy(true));

assertThat(rs.calculateTime(350), 1s(128)):

}
}

CS@AU

Henrik Baerbak Christensen

22

/v

Rephrasing as Test Case

AARHUS UNIVERSITET
Input Expected output
pay = 300 cent, day = Wednesday 120 min.
can be rephrased
Input Expected output
pay = 300 cent, day-type = weekday 120 min.

Fragment: chapter/test-double /iteration-2/src/test/java/paystation/domain/TestGammaWeekdayRate.java
@Test public void shouldDisplayl120MinFor300cent () {
RateStrategy rs =
new AlternatingRateStrategy (new LinearRateStrategy (),
new ProgressiveRateStrategy (),

new FixedDecisionStrategy (false));
assertThat(rs. calculateTime (300), 1is(300 / 5 = 2));

|

Direct input parameter: payment

Now: Direct input parameter: weekend or not

CS, AU Henrik Baerbak Christensen 23

Y o Side note: Sorry Bob ©

AARHUS UNIVERSITET

« On my ToDo ... introduce an Enum type
— No flag argument, replaced by descriptive names

public class TestAlternatingRate {
/*% Test two hour parking during weekdays */
@Test public woid shouldDisplayl20MinFor300centWeekday () {
RateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategyv().,
new ProgressiveRateStrategy(),

new FixedDecisiconStrategy (W
assertEquals(3200 / 5 * 2, rs.calculateTime (300));
}
/** Test two hour parking during weekends */
@Test public wvoid shouldDisplayl20MinFor3SOcentWeekend () {
EateStrategy rs =
new AlternatingRateStrategy(new LinearRateStrategy(),
new ProgressiveRateStrategvi().

V.AV

new FixedDecisionStrategy(W
assertEquals(300 / 5 * 2, rs.calculateTime (350)):

}
CS@AU Henrik Baerbak Christensen

24

eV Test Stub

AARHUS UNIVERSITET
 The new delegate is an example of a test stub

Definition: Test stub

A test stub is a replacement of a real depended-on unit that feeds indirect
input, defined by the test code, into the unit under test.

1: setup 2: prepare
L i

(3:install | | SoU

JUnit test 4'Exec,”te > que..w
UuT Test Stub
[
A
6: validate
- <

Stub returns ‘canned’ input

CS, AU Henrik Baerbak Christensen 25

/v UUT Queries served by Stubs

AARHUS UNIVERSITET
« Test Stubs serve queries (accessors) by the UUT

1: setup 2: prepare
,—o-'_'_'_'_'_'_r —h- —
[3:install “‘“—-| .

JUnit test 4:execute S: query -

nit tes - e

UuT Test Stub
_J

6: validate >

A Fix what is returned by the DOU

« Stubs are simple implementations (‘Evident Tests’)

« Stubs return canned or configured input to UUT
— ‘setNextValueToReturn(3);" return nextValue;
— return 3;

/v

AARHUS UNIVERSITET

Test Doubles

The Stub is just one type of
‘replacement delegate’

The superclass: Double

/v Meszaros (2007)

AARHUS UNIVERSITET
« There are actually several types of ‘replacements’...

e Test stub: A double whose purpose it is to feed indirect input, defined by the <Unit Tesr Vi
test case, into the UUT. PATTERNS

* Test spy: A double whose purpose it is to record the UUT’s indirect output for G -g
later verification by the test case.

* Mock object: A double, created and programmed dynamically by a mock library,
that may both serve as a stub and spy.

* Fake object: A double whose purpose is to be a light-weight performant replace-
ment for a slow or out-of-process DOU.

Test
Double??? Double
. AN
From the term ‘stunt - : | |
double’ in movie making 'Dummy | [Test Test Mock Fake
IL_D_I:-j_eEt_ } Stub Spy Object Ohject

CS@AU Henrik Baerbak Christensen 28

/v Test Spy

AARHUS UNIVERSITET
« Spies serve commands (mutators) by the UUT
1: setup
N 2:execute 3: command
JUnit test ' UUT ' DOU
l A
4: validate =
A What was sent to the DOU?

» Spies are recorders of interaction
— So, JUnit test can later query the spy about “what happened?”

« Again, simple implementations (‘Evident Tests’)
— If not, the bugs will be in the spy, not in the UUT ®

/v

AARHUS UNIVERSITET

« Chemical plant

— Control temperature in chemical
process
« Algorithm
— Measure the temperature
* Query the temperature sensor

— Compute a response
 If (T > 67) then cool the process; if (T < 62) then stop cooling;

— Activate the cooling system
« Command the cooler to turn On

* Manual testing:
— Let the process run; if plant explodes then the test has failed ©

CS@AU Henrik Baerbak Christensen 30

VeV The UUT

AARHUS UNIVERSITET

 The UUT (Unit-Under-Test) is of course the algorithm, the
monitoring of the chemical process:

— Compute a response
* Measure T
« If (T >67) then Turn on Cooling

» But there are two DOUs involved
— TemperaturSensor public interface TemperatureSensor |

double readTemperature ();
_ ' |
COOImgSyStem public interface CoolingSystem |

void turnCoolingOn ();
void turnCoolingOff ();

}

CS@AU Henrik Baerbak Christensen 31

eV The Test Doubles

AARHUS UNIVERSITET
« So we need two test doubles
« Exercise:

— Indirect input? Temperature
— Indirect output? Sensor

Cooling
System

— Stub? Spy?

CS@AU Henrik Baerbak Christensen 32

/v The Stub, you all know now

AARHUS UNIVERSITET

« Stub: Simple implementation, returning indirect output
that is either canned or configured.

— We want to control the indirect output, so we just provide a
method to configure it

public class TemperatureSensorStub implements TemperatureSensor {
private double temperature;

public void setTemperature(double temperatureToReport) {

temperature = temperatureToReport; \ Note: No ‘@Override’
} . .
It is a method just
@override . .
public double readTemperature() { implemented in the
return temperature; stub!
}

}

CS@AU Henrik Baerbak Christensen 33

/v So: A TestCase

AARHUS UNIVERSITET

e Given T > 67 Celcius, When asked to monitor, Then
cooling is turned on

Fragment: chapter/test-double/spy/src/ test/java/chemicalplant/ TestTemperatureRegulation.java
@Test
public void shouldTurnOnCoolingAbove67degrees() |
// Given a temperature above 67
temperatureSensor . setTemperature (67.2);
// When the monitor needs to regulate the temperature
plantMonitor. regulateTemperature ();
// Then cooling is commanded to turn on cooling
assertThat (coolingSystem . lastMethodCalled (), 15("turnCoolingOn"));

CS@AU Henrik Baerbak Christensen 34

/v

AARHUS UNIVERSITET

« Spies are recorders of interaction
— So, JUnit test can later query the spy about “what happened”

Fragment: chapter/test-double/spy/src/test/java /chemicalplant/CoolingSystemSpyjava
public class CoolingSystemSpy implements CoolingSystem {
private String lastCalledMethod = "none”;
@Override
public void turnCoolingOn () {
lastCalledMethod = "turnCoolingOn";
}

Spy

@Override .
public void turnCoolingOff() { Note: No ‘@Override’.

It is @a method just

lastCalledMethod = "turnCoolingOff";
}

public String lastMethodCalled () {
return lastCalledMethod;
}
}

implemented in the
spy!

CS@AU Henrik Baerbak Christensen 35

/v

AARHUS UNIVERSITET
« Validate that the cooling was turned on...

As used In...

Fragment: chapter/test-double/spy/src/ test/java/chemicalplant/ TestTemperature Regulation.java
@Test

public void shouldTurnOnCoolingAbove67degrees() |

// Given a temperature above 67

temperatureSensor . setTemperature (67.2);

// When the monitor needs to regulate the temperature
plantMonitor. regulateTemperature ();

// Then cooling is commanded to turn on cooling

assertThat (coolingSystem . lastMethodCalled (), is("turnCoolingOn"));

CS@AU Henrik Baerbak Christensen 36

eV Retrieval Interfaces

AARHUS UNIVERSITET

* Retrieval Interfaces: Special methods for setting and
inspecting state in doubles, only defined in the test
double classes themselves!

— l.e. the real temperature sensor should of course not have a
method to set the temperature, right?

Fragment: chapter/test-double/spy/src/test/java/chemicalplant/ TestTemperatureRegulation.java

public class TestTemperatureRegulation |{
private PlantMonitor plantMonitor;

private TemperatureSensorStub temperatureSensor ; < ——
private CoolingSystemSpy coolingSystem ; < ——

@BeforeEach
public void setup () |
temperatureSensor = new TemperatureSensorStub ();
coolingSystem = new CoolingSystemSpy ();
plantMonitor = new StandardPlantMonitor(temperatureSensor,
coolingSystem);

CS@AU } 37

VeV Side Note

AARHUS UNIVERSITET

 Retrieval interface are

— “The role that the object must play, as seen from the test
perspective”

— ltis a specific role that is only related to testing

« As such it could be designed by a

 Role Interface / Private Interface
e ... as introduced later in the course ©

/v Key point

AARHUS UNIVERSITET

Key Point: Test doubles make software testable

Many software units depend on indirect input and output that influence their
behavior. Typical indirect input are external resources like hardware sensors,
GPS location sensors, random-number generators, system clocks, etc. Typical
indirect output is commanding external hardware to open valves, start engines,
or writing output to external devices like file systems, databases, etc.

A test double replaces the real Depended On Unit and allows the testing code to
control the indirect input, and record the indirect output for verification.

* Allow us to test the nuclear reactor core control software
without doing the “Tjernobyl test'...

CS, AU Henrik Baerbak Christensen 39

eV, Note
AARHUS UNIVERSITET

* | use the 3-1-2 to derive a solution that “accidentally” has
a name and is a well-known concept; just as | previously
derived several design patterns.

CS, AU Henrik Baerbak Christensen 40

/v

AARHUS UNIVERSITET
* The other two types of doubles?

» Test stub: A double whose purpose it is to feed indirect input, dk.fined by the

test case, into the UUT.

* Test spy: A double whose purpose it is to record the UUT’s indirect output for

later verification by the test case.

What about?

("« Mock object: A double, created and programmed dynamically by a mock library,)
that may both serve as a stub and spy.
* Fake object: A double whose purpose is to be a light-weight performant replace-
ment for a slow or out-of-process DOU.
- J
Test
Double
AN
S | | |
'Dummy | [Test Test Mock Fake
IL_D_I:-j_eEt_ } Stub Spy Object Ohject

CS@AU Henrik Baerbak Christensen

41

/v Fake Object

AARHUS UNIVERSITET

... Is not needed in SWEA

They are light-weight, performant, replacements for slow
or out-of-process/networked DOUs

Examples
— Replacing a database with a in-memory hashmap
— Replacing a REST service with a simple in-memory impl.

Both are out-of-process — that is you have to start an
external service (a DB, a web server) which is difficult
from within JUnit

VeV Mocks

AARHUS UNIVERSITET
« ... are “even more not used” in SWEA (yet)
* Mocks are auto-generated doubles, made by libraries.

 Example: Mockito
— You need to tell Gradle to pull the library, of course...

testImplementation group: 'org.mockito',

hane: 'mockito-core', version: '4.7.0°

— ... Which allows you to

import org.Jjunit.jupiter.api.*;

import static org.mockito.Mockito.=;

CS@AU Henrik Baerbak Christensen 43

eV Mocks

AARHUS UNIVERSITET
« Creating your stub/spy is easy, just tell Mockito to do it!

public class TestTemperatureRegulation {

4 usages

private PlantMonitor plantMonitor;
5 usages

private TemperatureSensor temperatureSensor;
4 usages

private CoolingSystem coolingSystem;

@BeforeEach
public void setup() {

temperatureSensor = mock(TemperatureSensor.class);
coolingSystem = mock(CoolingSystem.class);

pLantMonitor = new 5tandardPlantMonitor(temperaturesSensor,

coolingSystem);

CS@AU Henrik Baerbak Christensen 44

eV Mocks

AARHUS UNIVERSITET

« Using Mocks you “program” your stub and spy behavior
using the Mockito API, not by coding Java.

dTest
public void shouldTurnOnCoolingAboveé7degrees() {

I TP — [e P S R N

when(temperatureSensor.readTemperature()).thenReturn(value: 67.2);

plantMonitor.regulateTemperature();

verify(coolingSystem).turnCoolingOn();

}

CS@AU Henrik Baerbak Christensen 45

eV Mocks or Not

AARHUS UNIVERSITET
* Personally, | am a bit torn on ‘to use or not?’
* The benefit

— “Quickly” add a test — | just say ‘mock(Database.class) and |
have a stub + spy for it...

— Quite elaborate verifications possible

H H if kedList .cl -
« Ordering, never, 10 times, any... verify(mockedList, never(}).clear();
InOrder inOrder = Mockito.inOrder (mockedList);
inOrder.verify(mockedList).size(); verify(mockedlList, atleast(l)).clear();
inOrder .verify(mockedList).add("a parameter"); verify(mockedList, atMost(1@)).clear();

inOrder.verify(mockedList).clear();

verify(mockedList).add("test");

verify(mockedList).add(anyString());

CS@AU Henrik Baerbak Christensen 46

eV Mocks or Not

AARHUS UNIVERSITET
* The liabilities

— | am not programming in Java!!!
* | am coding in obscure when()/verify() syntax
— No help from IntelliJ

— No help from 25+ years of experience
— | often find myself trial/error coding — It is not ‘evident test’

— Vendor Lock-in = | am stuck with a specific library
« Changing to EasyMock or jMock? Bad luck, rewrite all your tests!

— The Mockist approach slippery slope into white-box tests
« Tendency to test How things are done, not What was done...

* So — use it with care...
— (I did my EtaStone tests using Mockito, though, and loved it ©)

/v

AARHUS UNIVERSITET

Reusing the variability points...

Aah — | could do this...

CS, AU Henrik Baerbak Christensen

48

/v Variability points to the rescue

AARHUS UNIVERSITET

« The WeekendDecisionStrategy introduces yet another
variability point...

« Often they come in handy later if
— 1) they encapsulate well-defined responsibilities
— 2) are defined by interfaces and
— 3) uses delegation ©

VeV Static Architecture View

AARHUS UNIVERSITET

winterfaces

RateStrategy

winterfaces e
PayStation

S

LinearRateStrategy

winterfaces
WeekendDecisionStrategy |

Alternating the Strategy

ProgressiveRateStrategy

FixedDecisionStrategy ClockBasedDecisionStrategy

CS, AU Henrik Baerbak Christensen 50

Manual testing

/v

AARHUS UNIVERSITET
« Manual testlng of GammaTown for demo to end users!

Variant Selection

public class DialogDecisionStrategy implements WeekendDecision3trategy |

pubklic boolean isWeekend() |

return
JoptionPane.YES OFTION

JoptionPane.showConfirmDialog (null,
"Iz it weskend?™,
"WeekendDecisionStrategy”,

JoptionPane.YES N0 OFTION):

CS, AU

51

/v

AARHUS UNIVERSITET

CS, AU

Discussion

Henrik Baerbak Christensen

52

/v Package/Namespace View

AARHUS UNIVERSITET

« Gradle dictate that we split the code into two trees
— src/main/java: all production code rooted here
— src/test/java: all test code rooted here

 Here
— WeekendDecisionStrategy (interface)
— ClockBasedDecisionStrategy (class)
— FixedDecisionStrategy (class)

« Exercise: Where would you put these units?

Y C# Delegates / Java 8 Lambda

AARHUS UNIVERSITET

« The WeekendDecisionStrategy only contains a single
method and having an interface may seem a bit of an
overkill.

— In Java 8, you can use a Lambda

— In C# you may use delegates that is more or less a type safe
function pointer.

— In functional languages you may use higher order functions,
closures

/v

AARHUS UNIVERSITET

Summary

/v Key Points

AARHUS UNIVERSITET
 Test Doubles make software testable.

« 3-1-2 technique help isolating DOUs

— because | isolated the responsibility by an interface | had the
opportunity to delegate to a test stub

* My solution is overly complex to our weekend issue

— Yes! Perhaps subclassing in test tree would be better here ©

— But
* it scales well to complex DOUs

« itis good at handling aspects that may vary across the entire system
(see next slide)

VeV This is a PowerTool

AARHUS UNIVERSITET

 Test Doubles usage are a key technique in modern,
microservice, continuous deployment, development!!!

— Build servers that automatically pull git repositories for newest
releases, runs extensive tests, and finally pushes code into
production on the production servers...

* It would not be possible if stubs, spies, fake objects,
mocks were not used to thoroughly test using
automated testing!

 Example:

— NetFlix need to survive server crashes to continue streaming
» Test stubs (‘saboteurs’) throw |IOExceptions to simulate failures...

/v Still Untested Code

AARHUS UNIVERSITET

« Some code units are not automatically testable in a cost-
efficient manner

— Note that if | rely on the automatic tests only, then the
ClockBasedDecisionStrategy instance is never tested!

 (which it actually was when using the manual tests!)

 Thus:

— DOUs handling external resources must still be manually tested
(and/or formally reviewed by software reviews).

— Keep ‘non-testable code’ in the smallest possible software unit,
and if it ain’t broke, then don’t fix it ©

/v Know When to Stop Testing

AARHUS UNIVERSITET

 Note also that | do not test that the return values from the
system library methods are not tested.

» | expect Oracle / MicroSoft to test their software.
— sometimes we are wrong but it is not cost efficient.

* Do not test the random generator ©

