
Software Engineering

and Architecture

Test Doubles

… getting the world under test control

GammaTown’s RateStrategy

CS, AU Henrik Bærbak Christensen 2

Read system clock to

determine if it is

weekend

But how to test? How do
I TDD it?

Tricky Requirement

• The test case for AlphaTown:

• … problematic for GammaTown…

Henrik Bærbak Christensen 3CS, AU

Analysis

• Gammatown, however, has one more parameter in the

rate policy test case

• The problem is

This parameter is not accessible

from the testing code!

Henrik Bærbak Christensen 4CS, AU

Code view

CS, AU Henrik Bærbak Christensen 5

Direct input parameter: payment

Indirect input parameter: day of week

???

TDD of State Pattern

• To implement GammaTown requirements I do it manually

CS, AU Henrik Bærbak Christensen 6

But it is bad …

• After introducing Gammatown I no longer have

automated tests because I have to run some of the tests

during the weekend.

– I have a ‘manual run on weekend and another run on weekdays

targets’

• I want to get back to as much automated testing as

possible.

Henrik Bærbak Christensen 7CS, AU

Analysis of Parameters

CS, AU Henrik Bærbak Christensen 8

Direct input parameter: payment

Indirect input parameter: day of week

???

Definitions

• This reflection allows me to classify parameters:

• UUT = Unit Under Test.

– here it is the AlternatingRateStrategy instance...

Henrik Bærbak Christensen 9CS, AU

Where does indirect input come from?

• So the 1000$ question is: where does the indirect input

parameter come from?

• Exercise: Name other types of indirect input?

Henrik Bærbak Christensen 10CS, AU

Analysis: Code view

• Structure of xUnit test cases

– Collaboration diagram: interaction between objects

• DOU = Depended On Unit

Henrik Bærbak Christensen 11CS, AU

Direct versus Indirect

Henrik Bærbak Christensen 12

Direct input Indirect input

CS, AU

The Gammatown Rate Policy

• My DOU is the Java system clock:

Henrik Bærbak Christensen 13

Test code AlternatingRateStrategy
System Clock:

java.time package

Method parameters Calling library methods

CS, AU

The Challenge

• This analysis allows me to state the challenge:

• How can I make the DOU return values that are defined

by the testing code?
Henrik Bærbak Christensen 14

Test code AlternatingRateStrategy

System Clock

System.DateTime

java.util.Calendar

CS, AU

Analysis

• Basically it is a variability problem

– During testing, use data given by test code

– During normal operations, use data given by system

• So I can reuse my previous analysis

– parametric proposal

– polymorphic proposal

– compositional proposal

Henrik Bærbak Christensen 15CS, AU

Scientists like to do this all the time! If

we can rephrase a new question into

an old one, whose answer is known –

then we are done ☺

Parametric

• This is perhaps the oldest solution in the C world

• #ifdef DEBUG

• today = PRESET_VALUE;

• #else

• today = (get date from clock);

• #

• return today == Saturday || today == Sunday;

Henrik Bærbak Christensen 16CS, AU

Polymorphic

• Subclassing...

• Actually a quite reasonable approach...

– If you locate the TestAlterna… in the /test tree in the codebase

• Argue why!!!

• Hm, liability: Have to make isWeekend() ‘non private’
Henrik Bærbak Christensen 17

AlternatingRateStrategy

TestAlternatingRateStrategy

CS, AU

Compositional

• 3-1-2 leads to yet another Strategy Pattern:

Henrik Bærbak Christensen 18CS, AU

Static Architecture View

• Exercise: Why is this Strategy and not State?

Henrik Bærbak Christensen 19CS, AU

Production Code

CS, AU Henrik Bærbak Christensen 20

The algorithm to compute if its
weekend is delegated to our

decisionStrategy

The Stub

• To make a deterministic test; we write an implementation

which makes the ‘indirect input’ into ‘direct input’

– That is, we get the ‘is-it-weekend’ under direct control of our test

code

CS, AU Henrik Bærbak Christensen 21

Side note: Which Uncle Bob
property do I violate here ?

Now the Test Code is:

CS@AU Henrik Bærbak Christensen 22

Rephrasing as Test Case

CS, AU Henrik Bærbak Christensen 23

Direct input parameter: payment

Now: Direct input parameter: weekend or not

Side note: Sorry Bob ☺

• On my ToDo … introduce an Enum type

– No flag argument, replaced by descriptive names

CS@AU Henrik Bærbak Christensen 24

IS_WEEKDAY

IS_WEEKEND

Test Stub

• The new delegate is an example of a test stub

Henrik Bærbak Christensen 25CS, AU

Stub returns ‘canned’ input

UUT Queries served by Stubs

• Test Stubs serve queries (accessors) by the UUT

• Stubs are simple implementations (‘Evident Tests’)

• Stubs return canned or configured input to UUT

– ‘setNextValueToReturn(3);’ return nextValue;

– return 3;

CS@AU Henrik Bærbak Christensen 26

Fix what is returned by the DOU

Test Doubles

The Stub is just one type of

‘replacement delegate’

The superclass: Double

Meszaros (2007)

• There are actually several types of ‘replacements’…

CS@AU Henrik Bærbak Christensen 28

Double???
From the term ‘stunt

double’ in movie making

Test Spy

• Spies serve commands (mutators) by the UUT

• Spies are recorders of interaction

– So JUnit test can later query the spy about “what happened?”

• Again, simple implementations (‘Evident Tests’)

CS@AU Henrik Bærbak Christensen 29

What was sent to the DOU?

command

Example

• Chemical plant

– Control temperature in chemical

process

• Algorithm

– Measure the temperature

• Query the temperature sensor

– Compute a response

• If (T > 67) then cool the process; if (T < 62) then stop cooling;

– Activate the cooling system

• Command the cooler to turn On

• Manual testing:

– Let the process run; if it explodes then the test has failed ☺

CS@AU Henrik Bærbak Christensen 30

The UUT

• The UUT (Unit-Under-Test) is of course the algorithm, the

monitoring of the chemical process
– Compute a response

• Measure T

• If (T > 67) then Turn on Cooling

• But there are two DOUs involved

– TemperaturSensor

– CoolingSystem

CS@AU Henrik Bærbak Christensen 31

The Test Doubles

• So we need two test doubles

• Exercise:

– Indirect input?

– Indirect output?

– Stub? Spy?

CS@AU Henrik Bærbak Christensen 32

PlantMonitor

Cooling
System

Temperature
Sensor

The Stub, you all know now

• Stub: Simple implementation, returning indirect output

that is either canned or configured.

– We want to control the indirect output, so we just provide a

method to configure it

CS@AU Henrik Bærbak Christensen 33

Note: No ‘@Override’.
It is a method just

implemented in the
stub!

So: A TestCase

• Given T > 67 Celcius, When asked to monitor, Then

cooling is turned on

CS@AU Henrik Bærbak Christensen 34

Spy

• Spies are recorders of interaction

– So JUnit test can later query the spy about “what happened”

CS@AU Henrik Bærbak Christensen 35

Note: No ‘@Override’.
It is a method just

implemented in the
spy!

As used in…

• Validate that the cooling was turned on…

CS@AU Henrik Bærbak Christensen 36

Retrieval Interfaces

• Retrieval Interfaces: Special methods for setting and

inspecting state in doubles, only defined in the test

double classes themselves!

– I.e. the real temperature sensor should of course not have a

method to set the temperature, right?

• Thus doubles are often declared by class, not interface

CS@AU Henrik Bærbak Christensen 37

Side Note

• Retrieval interface are

– “The role that the object must play, as seen from the test

perspective”

– It is a specific role that is only related to testing

• As such it could be designed by a

• Role Interface / Private Interface

• … as introduced later in the course ☺

CS@AU Henrik Bærbak Christensen 38

Key point

• Allow us to test the nuclear reactor core control software

without doing the ‘Tjernobyl test’…

CS, AU Henrik Bærbak Christensen 39

Note

• Please note that once again the 3-1-2 is the underlying

and powerful engine for Test Doubles.

– Encapsulate the temperature sensor that (3) varies, by defining

an interface (1), and then use delegation (2) to let ‘someone else

read the temperature’

• I use the 3-1-2 to derive a solution that “accidentally” has

a name and is a well known concept; just as I previously

derived several design patterns.

Henrik Bærbak Christensen 40CS, AU

Fake Object

• ... Is not needed in SWEA

• They are light-weight, performant, replacements for slow

or out-of-process DOUs

• Examples

– Replacing a database with a in-memory hashmap

– Replacing a REST service with a simple in-memory impl.

• Both are out-of-process – that is you have to start an

external service (a DB, a web server) which is difficult

from within JUnit

CS@AU Henrik Bærbak Christensen 41

Mocks

• … are “even more not used” in SWEA (yet)

• Mocks are auto-generated doubles, made by libraries.

• Example: Mockito

– You need to tell Gradle to pull the library, of course…

– … which allows you to

CS@AU Henrik Bærbak Christensen 42

Mocks

• Creating your stub/spy is easy, just tell Mockito to do it!

CS@AU Henrik Bærbak Christensen 43

Mocks

• Using Mocks you “program” your stub and spy behavior

using the Mockito API, not by coding Java.

CS@AU Henrik Bærbak Christensen 44

Mocks or Not

• Personally, I am a bit torn on ‘to use or not?’

• The benefit

– “Quickly” add a test – I just say ‘mock(Database.class)’ and I

have a stub + spy for it…

– Quite elaborate verifications possible

• Ordering, never, 10 times, any…

CS@AU Henrik Bærbak Christensen 45

Mocks or Not

• The liabilities

– I am not programming in Java!!!

• I am coding in obscure when()/verify() syntax

– No help from IntelliJ

– No help from 25+ years of experience

– I often find myself trial/error coding – It is not ‘evident test’

– Vendor Lock-in = I am stuck with a specific library

• Changing to EasyMock or jMock? Bad luck, rewrite all your tests!

– The Mockist approach slippery slope into white-box tests

• Tendency to test How things are done, not What was done…

• So – use it with care…

– (I did my EtaStone tests using Mockito, though, and loved it ☺)

CS@AU Henrik Bærbak Christensen 46

Reusing the variability points...

Aah – I could do this...

CS, AU Henrik Bærbak Christensen 47

Variability points to the rescue

• The WeekendDecisionStrategy introduces yet another

variability point...

• Often they come in handy later if

– 1) they encapsulate well-defined responsibilities

– 2) are defined by interfaces and

– 3) uses delegation ☺

CS, AU Henrik Bærbak Christensen 48

Static Architecture View

Henrik Bærbak Christensen 49CS, AU

Manual testing

• Manual testing of GammaTown, for demo to end users!

CS, AU Henrik Bærbak Christensen 50

Discussion

CS, AU Henrik Bærbak Christensen 51

Package/Namespace View

• Gradle dictate that we split the code into two trees

– src/main/java: all production code rooted here

– src/test/java: all test code rooted here

• Here

– WeekendDecisionStrategy (interface)

– ClockBasedDecisionStrategy (class)

– FixedDecisionStrategy (class)

• Exercise: Where would you put these units?

Henrik Bærbak Christensen 52CS, AU

C# Delegates / Java 8 Lambda

• The WeekendDecisionStrategy only contains a single

method and having an interface may seem a bit of an

overkill.

– In Java 8, you can use a Lambda

– In C# you may use delegates that is more or less a type safe

function pointer.

– In functional languages you may use higher order functions,

closures

Henrik Bærbak Christensen 53CS, AU

Summary

Key Points

• Test Doubles make software testable.

• 3-1-2 technique help isolating DOUs
– because I isolated the responsibility by an interface I had the

opportunity to delegate to a test stub

• My solution is overly complex to our weekend issue
– Yes! Perhaps subclassing in test tree would be better here ☺

– But

• it scales well to complex DOUs

• it is good at handling aspects that may vary across the entire system
(see next slide)

Henrik Bærbak Christensen 55CS, AU

This is a PowerTool

• Test Doubles usage are a key technique in modern,

microservice, continuous deployment, development!!!

– Build servers that automatically pull git repositories for newest

releases, runs extensive tests, and finally pushes code into

production on the production servers…

• It would not be possible if stubs, spies, fake objects,

mocks were not used to thoroughly test using

automated testing!

• Example:

– NetFlix need to survive server crashes to continue streaming

• Test stubs (‘saboteurs’) throw IOExceptions to simulate failures…

CS@AU Henrik Bærbak Christensen 56

Still Untested Code

• Some code units are not automatically testable in a cost-
efficient manner
– Note that if I rely on the automatic tests only, then the

ClockBasedDecisionStrategy instance is never tested!

• (which it actually was when using the manual tests!)

• Thus:
– DOUs handling external resources must still be manually tested

(and/or formally reviewed by software reviews).

– Keep ‘non-testable code’ in the smallest possible software unit,
and if it ain’t broke, then don’t fix it ☺

Henrik Bærbak Christensen 57CS, AU

Know When to Stop Testing

• Note also that I do not test that the return values from the

system library methods are not tested.

• I expect Oracle / MicroSoft to test their software.

– sometimes we are wrong but it is not cost efficient.

• Do not test the random generator ☺

Henrik Bærbak Christensen 58CS, AU

