
Software Engineering

and Architecture

Test Doubles

… getting the world under test control



GammaTown’s RateStrategy
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Read system clock to 

determine if it is 

weekend

But how to test? How do 
I TDD it?



Tricky Requirement

• The test case for AlphaTown:

• … problematic for GammaTown…
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Analysis

• Gammatown, however, has one more parameter in the 

rate policy test case

• The problem is

This parameter is not accessible 

from the testing code!
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Code view
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Direct input parameter: payment

Indirect input parameter: day of week

???



TDD of State Pattern

• To implement GammaTown requirements I do it manually
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But it is bad …

• After introducing Gammatown I no longer have 

automated tests because I have to run some of the tests 

during the weekend.

– I have a ‘manual run on weekend and another run on weekdays 

targets’

• I want to get back to as much automated testing as 

possible.
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Analysis of Parameters
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Direct input parameter: payment

Indirect input parameter: day of week

???



Definitions

• This reflection allows me to classify parameters:

• UUT = Unit Under Test.

– here it is the AlternatingRateStrategy instance...
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Where does indirect input come from?

• So the 1000$ question is: where does the indirect input 

parameter come from?

• Exercise: Name other types of indirect input?
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Analysis: Code view

• Structure of xUnit test cases

– Collaboration diagram: interaction between objects

• DOU = Depended On Unit
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Direct versus Indirect
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Direct input Indirect input
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The Gammatown Rate Policy

• My DOU is the Java system clock:
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Test code AlternatingRateStrategy
System Clock:

java.time package

Method parameters Calling library methods
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The Challenge

• This analysis allows me to state the challenge:

• How can I make the DOU return values that are defined 

by the testing code?
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Test code AlternatingRateStrategy

System Clock

System.DateTime 

java.util.Calendar
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Analysis

• Basically it is a variability problem

– During testing, use data given by test code

– During normal operations, use data given by system

• So I can reuse my previous analysis

– parametric proposal

– polymorphic proposal

– compositional proposal
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Scientists like to do this all the time! If 

we can rephrase a new question into 

an old one, whose answer is known –

then we are done ☺



Parametric

• This is perhaps the oldest solution in the C world

• #ifdef DEBUG

•   today = PRESET_VALUE;

• #else

•   today = (get date from clock);

• #

• return today == Saturday || today == Sunday;
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Polymorphic

• Subclassing...

• Actually a quite reasonable approach...

– If you locate the TestAlterna… in the /test tree in the codebase

• Argue why!!!

• Hm, liability: Have to make isWeekend() ‘non private’
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AlternatingRateStrategy

TestAlternatingRateStrategy
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Compositional

• 3-1-2 leads to yet another Strategy Pattern:
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Static Architecture View

• Exercise: Why is this Strategy and not State?
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Production Code
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The algorithm to compute if its 
weekend is delegated to our 

decisionStrategy



The Stub

• To make a deterministic test; we write an implementation 

which makes the ‘indirect input’ into ‘direct input’

– That is, we get the ‘is-it-weekend’ under direct control of our test 

code
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Side note: Which Uncle Bob 
property do I violate here ?



Now the Test Code is:
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Rephrasing as Test Case

CS, AU Henrik Bærbak Christensen 23

Direct input parameter: payment

Now: Direct input parameter: weekend or not



Side note: Sorry Bob ☺

• On my ToDo … introduce an Enum type

– No flag argument, replaced by descriptive names
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IS_WEEKDAY

IS_WEEKEND



Test Stub

• The new delegate is an example of a test stub
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Stub returns ‘canned’ input



UUT Queries served by Stubs

• Test Stubs serve queries (accessors) by the UUT

• Stubs are simple implementations (‘Evident Tests’)

• Stubs return canned or configured input to UUT

– ‘setNextValueToReturn(3);’ return nextValue;

– return 3;
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Fix what is returned by the DOU



Test Doubles

The Stub is just one type of 

‘replacement delegate’

The superclass: Double



Meszaros (2007)

• There are actually several types of ‘replacements’…
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Double???
From the term ‘stunt 

double’ in movie making



Test Spy

• Spies serve commands (mutators) by the UUT

• Spies are recorders of interaction

– So JUnit test can later query the spy about “what happened?”

• Again, simple implementations (‘Evident Tests’)
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What was sent to the DOU?

command



Example

• Chemical plant

– Control temperature in chemical

process

• Algorithm

– Measure the temperature

• Query the temperature sensor

– Compute a response

• If (T > 67) then cool the process; if (T < 62) then stop cooling;

– Activate the cooling system

• Command the cooler to turn On

• Manual testing:

– Let the process run; if it explodes then the test has failed ☺
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The UUT

• The UUT (Unit-Under-Test) is of course the algorithm, the 

monitoring of the chemical process
– Compute a response

• Measure T

• If (T > 67) then Turn on Cooling

• But there are two DOUs involved

– TemperaturSensor

– CoolingSystem
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The Test Doubles

• So we need two test doubles

• Exercise:

– Indirect input?

– Indirect output?

– Stub? Spy?
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PlantMonitor

Cooling
System

Temperature
Sensor



The Stub, you all know now

• Stub: Simple implementation, returning indirect output 

that is either canned or configured.

– We want to control the indirect output, so we just provide a 

method to configure it
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Note: No ‘@Override’. 
It is a method just 

implemented in the 
stub!



So: A TestCase

• Given T > 67 Celcius, When asked to monitor, Then 

cooling is turned on
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Spy

• Spies are recorders of interaction

– So JUnit test can later query the spy about “what happened”
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Note: No ‘@Override’. 
It is a method just 

implemented in the 
spy!



As used in…

• Validate that the cooling was turned on…
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Retrieval Interfaces

• Retrieval Interfaces: Special methods for setting and 

inspecting state in doubles, only defined in the test 

double classes themselves!

– I.e. the real temperature sensor should of course not have a 

method to set the temperature, right?

• Thus doubles are often declared by class, not interface
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Side Note

• Retrieval interface are

– “The role that the object must play, as seen from the test 

perspective”

– It is a specific role that is only related to testing

• As such it could be designed by a 

• Role Interface  / Private Interface

• … as introduced later in the course ☺
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Key point

• Allow us to test the nuclear reactor core control software 

without doing the ‘Tjernobyl test’…
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Note

• Please note that once again the 3-1-2 is the underlying 

and powerful engine for Test Doubles. 

– Encapsulate the temperature sensor that (3) varies, by defining 

an interface (1), and then use delegation (2) to let ‘someone else 

read the temperature’

• I use the 3-1-2 to derive a solution that “accidentally” has 

a name and is a well known concept; just as I previously 

derived several design patterns.
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Fake Object

• ... Is not needed in SWEA

• They are light-weight, performant, replacements for slow 

or out-of-process DOUs

• Examples

– Replacing a database with a in-memory hashmap

– Replacing a REST service with a simple in-memory impl.

• Both are out-of-process – that is you have to start an 

external service (a DB, a web server) which is difficult 

from within JUnit
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Mocks

• … are “even more not used” in SWEA (yet)

• Mocks are auto-generated doubles, made by libraries.

• Example: Mockito

– You need to tell Gradle to pull the library, of course…

– … which allows you to
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Mocks

• Creating your stub/spy is easy, just tell Mockito to do it!
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Mocks

• Using Mocks you “program” your stub and spy behavior 

using the Mockito API, not by coding Java. 
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Mocks or Not

• Personally, I am a bit torn on ‘to use or not?’

• The benefit

– “Quickly” add a test – I just say ‘mock(Database.class)’ and I 

have a stub + spy for it…

– Quite elaborate verifications possible

• Ordering, never, 10 times, any…
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Mocks or Not

• The liabilities

– I am not programming in Java!!!

• I am coding in obscure when()/verify() syntax

– No help from IntelliJ

– No help from 25+ years of experience

– I often find myself trial/error coding – It is not ‘evident test’

– Vendor Lock-in = I am stuck with a specific library

• Changing to EasyMock or jMock? Bad luck, rewrite all your tests!

– The Mockist approach slippery slope into white-box tests

• Tendency to test How things are done, not What was done…

• So – use it with care…

– (I did my EtaStone tests using Mockito, though, and loved it ☺)
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Reusing the variability points...

Aah – I could do this...
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Variability points to the rescue

• The WeekendDecisionStrategy introduces yet another 

variability point...

• Often they come in handy later if 

– 1) they encapsulate well-defined responsibilities 

– 2) are defined by interfaces and 

– 3) uses delegation ☺
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Static Architecture View
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Manual testing

• Manual testing of GammaTown, for demo to end users!
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Discussion

CS, AU Henrik Bærbak Christensen 51



Package/Namespace View

• Gradle dictate that we split the code into two trees

– src/main/java: all production code rooted here

– src/test/java: all test code rooted here

• Here

– WeekendDecisionStrategy (interface)

– ClockBasedDecisionStrategy (class)

– FixedDecisionStrategy (class)

• Exercise: Where would you put these units?
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C# Delegates / Java 8 Lambda

• The WeekendDecisionStrategy only contains a single 

method and having an interface may seem a bit of an 

overkill.

– In Java 8, you can use a Lambda

– In C# you may use delegates that is more or less a type safe 

function pointer.

– In functional languages you may use higher order functions, 

closures
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Summary



Key Points

• Test Doubles make software testable.

• 3-1-2 technique help isolating DOUs
– because I isolated the responsibility by an interface I had the 

opportunity to delegate to a test stub

• My solution is overly complex to our weekend issue
– Yes! Perhaps subclassing in test tree would be better here ☺

– But 

• it scales well to complex DOUs

• it is good at handling aspects that may vary across the entire system 
(see next slide)
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This is a PowerTool

• Test Doubles usage are a key technique in modern, 

microservice, continuous deployment, development!!!

– Build servers that automatically pull git repositories for newest 

releases, runs extensive tests, and finally pushes code into 

production on the production servers…

• It would not be possible if stubs, spies, fake objects, 

mocks were not used to thoroughly test using 

automated testing!

• Example:

– NetFlix need to survive server crashes to continue streaming

• Test stubs (‘saboteurs’) throw IOExceptions to simulate failures…
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Still Untested Code

• Some code units are not automatically testable in a cost-
efficient manner
– Note that if I rely on the automatic tests only, then the 

ClockBasedDecisionStrategy instance is never tested!

• (which it actually was when using the manual tests!)

• Thus: 
– DOUs handling external resources must still be manually tested 

(and/or formally reviewed by software reviews).

– Keep ‘non-testable code’ in the smallest possible software unit, 
and if it ain’t broke, then don’t fix it ☺
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Know When to Stop Testing

• Note also that I do not test that the return values from the 

system library methods are not tested.

• I expect Oracle / MicroSoft to test their software.

– sometimes we are wrong but it is not cost efficient.

• Do not test the random generator ☺
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